332 research outputs found

    Aspergillus fumigatus-Related Species in Clinical Practice.

    Get PDF
    Aspergillus fumigatus is the main etiologic agent of invasive aspergillosis (IA). Other Aspergillus species belonging to the section Fumigati (A. fumigatus complex) may occasionally be the cause of IA. These strains are often misidentified, as they cannot be distinguished from A. fumigatus by conventional morphological analysis and sequencing methods. This lack of recognition may have important consequences as these A. fumigatus-related species often display some level of intrinsic resistance to azoles and other antifungal drugs. A. lentulus, A. udagawae, A. viridinutans, and A. thermomutatus (Neosartorya pseudofischeri) have been associated with refractory cases of IA. Microbiologists should be able to suspect the presence of these cryptic species behind a putative A. fumigatus isolate on the basis of some simple characteristics, such as defect in sporulation and/or unusual antifungal susceptibility profile. However, definitive species identification requires specific sequencing analyses of the beta-tubulin or calmodulin genes, which are not available in most laboratories. Multiplex PCR assays or matrix-assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF MS) gave promising results for rapid and accurate distinction between A. fumigatus and other Aspergillus spp. of the section Fumigati in clinical practice. Improved diagnostic procedures and antifungal susceptibility testing may be helpful for the early detection and management of these particular IA cases

    Novel Therapeutic Approaches to Invasive Candidiasis: Considerations for the Clinician.

    Get PDF
    Invasive candidiasis (IC), due to the yeast pathogen Candida, is still a major cause of in-hospital morbidity and mortality. The limited number of antifungal drug classes and the emergence of multi-resistant Candida species, such as Candida auris and some Candida glabrata isolates, is concerning. However, recent advances in antifungal drug development provide promising perspectives for the therapeutic approach of IC. Notably, three novel antifungal agents, currently in Phase II/III clinical trials, are expected to have an important place for the treatment of IC in the future. Rezafungin is a novel echinocandin with prolonged half-life. Ibrexafungerp and fosmanogepix are two first-in-class antifungal drugs with broad spectrum activity against Candida spp., including C. auris and echinocandin-resistant species. These novel antifungal agents also represent interesting alternative options because of their acceptable oral bioavailability (ibrexafungerp and fosmanogepix) or their large interdose interval (once weekly intravenous administration for rezafungin) for prolonged and/or outpatient treatment of complicated IC. This review discusses the potential place of these novel antifungal drugs for the treatment of IC considering their pharmacologic properties and their preclinical and clinical data

    Calcineurin as a Multifunctional Regulator: Unraveling Novel Functions in Fungal Stress Responses, Hyphal Growth, Drug Resistance, and Pathogenesis.

    Get PDF
    Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches

    Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis.

    Get PDF
    Invasive aspergillosis (IA) is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B) or cell wall (echinocandins) are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs) are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90), an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed

    Blood samples drawn for culture as a surrogate marker for case-mix adjustment of hospital antibiotic use.

    Get PDF
    Hospital antibiotic consumption is generally adjusted to occupancy. This study hypothesised that the number of blood culture samples could be a surrogate marker for case-mix adjustment. Antibiotic consumption was compared over 16 consecutive trimesters in one medical ward in terms of patient-days or blood culture samples. Compared with patient-days, measurement adjusted to blood culture samples detected three trimesters with an unusually high consumption, and one trimester with consumption falsely classified as high because of a high incidence of infections. Blood culture numbers enabled easy and accurate identification of periods with a drift in antibiotic consumption ina medical ward

    Histone deacetylase inhibition as an alternative strategy against invasive aspergillosis.

    Get PDF
    Invasive aspergillosis (IA) is a life-threatening infection due to Aspergillus fumigatus and other Aspergillus spp. Drugs targeting the fungal cell membrane (triazoles, amphotericin B) or cell wall (echinocandins) are currently the sole therapeutic options against IA. Their limited efficacy and the emergence of resistance warrant the identification of new antifungal targets. Histone deacetylases (HDACs) are enzymes responsible of the deacetylation of lysine residues of core histones, thus controlling chromatin remodeling and transcriptional activation. HDACs also control the acetylation and activation status of multiple non-histone proteins, including the heat shock protein 90 (Hsp90), an essential molecular chaperone for fungal virulence and antifungal resistance. This review provides an overview of the different HDACs in Aspergillus spp. as well as their respective contribution to total HDAC activity, fungal growth, stress responses, and virulence. The potential of HDAC inhibitors, currently under development for cancer therapy, as novel alternative antifungal agents against IA is discussed

    Calcineurin-Mediated Regulation of Hyphal Growth, Septation, and Virulence in Aspergillus fumigatus.

    Get PDF
    Calcineurin is a heterodimeric protein phosphatase complex composed of catalytic (CnaA) and regulatory (CnaB) subunits and plays diverse roles in regulating fungal stress responses, morphogenesis, and pathogenesis. Fungal pathogens utilize the calcineurin pathway to survive in the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making calcineurin a promising antifungal drug target. Here, we review novel findings on calcineurin localization and functions in Aspergillus fumigatus hyphal growth and septum formation through regulation of proteins involved in cell wall biosynthesis. Extensive mutational analysis in the functional domains of A. fumigatus CnaA has led to an understanding of the relevance of these domains for the localization and function of CnaA at the hyphal septum. An evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi was found to be responsible for virulence in A. fumigatus. This finding of a filamentous fungal-specific mechanism controlling hyphal growth and virulence represents a potential target for antifungal therapy

    On track to limit antifungal overuse!

    Get PDF
    corecore